Pattern Finding Performance Using Current Tracklet Finding Algorithm

Jack Carlton
University of Kentucky

Short Overview

- Tracklet finding reconstruction data can be used in python <u>pattern finding test</u> <u>playground</u>
 - Use it to see how pattern reconstruction performs using reconstructed tracklets as opposed to truth
- Overall performance worse compared to previous plots
 - Before we used truth information from tracklets, so this is unsurprising
- Performance of vertex finding algorithm improved using the new tracklet reco's endpoints
 - Before, we were using Sean's fitting algorithm to determine endpoints of tracklets

$\pi \rightarrow \mu \rightarrow e$ Performance Difference using x-z info only

π→e Performance Difference using x-z info only

Auxiliary Slides

$\pi \rightarrow \mu \rightarrow e$ (Reconstructed Tracklet Evaluation, x-z info only)

 $\pi \rightarrow \mu \rightarrow e$ (Truth Tracklet Evaluation, x-z info only)

 $\pi \rightarrow e$ (Reconstructed Tracklet Evaluation, x-z info only)

21828 / 23714

0/3412

10⁴

10³

Pattern Reconstruction by True Particle Composition (Nevents = 27795)

 $\pi \rightarrow e$ (Truth Tracklet Evaluation, x-z info only)

$\pi \rightarrow \mu \rightarrow e$ (x-z info only) Validation Using True Tracklets \rightarrow True Patterns Vs. Reco Tracklets \rightarrow True Patterns

π→e (x-z info only) Validation Using True Tracklets → True Patterns Vs. Reco Tracklets → True Patterns

